4.2

CVE-2025-46722

vLLM is an inference and serving engine for large language models (LLMs). In versions starting from 0.7.0 to before 0.9.0, in the file vllm/multimodal/hasher.py, the MultiModalHasher class has a security and data integrity issue in its image hashing method. Currently, it serializes PIL.Image.Image objects using only obj.tobytes(), which returns only the raw pixel data, without including metadata such as the image’s shape (width, height, mode). As a result, two images of different sizes (e.g., 30x100 and 100x30) with the same pixel byte sequence could generate the same hash value. This may lead to hash collisions, incorrect cache hits, and even data leakage or security risks. This issue has been patched in version 0.9.0.
Verknüpft mit AI von unstrukturierten Daten zu bestehenden CPE der NVD
Diese Information steht angemeldeten Benutzern zur Verfügung. Login Login
Daten sind bereitgestellt durch das CVE Programm von einer CVE Numbering Authority (CNA) (Unstrukturiert).
Herstellervllm-project
Produkt vllm
Version >= 0.7.0, < 0.9.0
Status affected
Zu dieser CVE wurde keine CISA KEV oder CERT.AT-Warnung gefunden.
EPSS Metriken
Typ Quelle Score Percentile
EPSS FIRST.org 0.07% 0.21
CVSS Metriken
Quelle Base Score Exploit Score Impact Score Vector String
security-advisories@github.com 4.2 1.6 2.5
CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:L/I:N/A:L
CWE-1023 Incomplete Comparison with Missing Factors

The product performs a comparison between entities that must consider multiple factors or characteristics of each entity, but the comparison does not include one or more of these factors.

CWE-1288 Improper Validation of Consistency within Input

The product receives a complex input with multiple elements or fields that must be consistent with each other, but it does not validate or incorrectly validates that the input is actually consistent.