7.5
CVE-2025-46560
- EPSS 0.11%
- Veröffentlicht 30.04.2025 00:24:53
- Zuletzt bearbeitet 28.05.2025 19:15:56
- Quelle security-advisories@github.com
- CVE-Watchlists
- Unerledigt
vLLM is a high-throughput and memory-efficient inference and serving engine for LLMs. Versions starting from 0.8.0 and prior to 0.8.5 are affected by a critical performance vulnerability in the input preprocessing logic of the multimodal tokenizer. The code dynamically replaces placeholder tokens (e.g., <|audio_|>, <|image_|>) with repeated tokens based on precomputed lengths. Due to inefficient list concatenation operations, the algorithm exhibits quadratic time complexity (O(n²)), allowing malicious actors to trigger resource exhaustion via specially crafted inputs. This issue has been patched in version 0.8.5.
Verknüpft mit AI von unstrukturierten Daten zu bestehenden CPE der NVD
Daten sind bereitgestellt durch National Vulnerability Database (NVD)
| Typ | Quelle | Score | Percentile |
|---|---|---|---|
| EPSS | FIRST.org | 0.11% | 0.305 |
| Quelle | Base Score | Exploit Score | Impact Score | Vector String |
|---|---|---|---|---|
| nvd@nist.gov | 7.5 | 3.9 | 3.6 |
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
|
| security-advisories@github.com | 6.5 | 2.8 | 3.6 |
CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
|
CWE-1333 Inefficient Regular Expression Complexity
The product uses a regular expression with an inefficient, possibly exponential worst-case computational complexity that consumes excessive CPU cycles.