5.5

CVE-2024-26605

In the Linux kernel, the following vulnerability has been resolved:

PCI/ASPM: Fix deadlock when enabling ASPM

A last minute revert in 6.7-final introduced a potential deadlock when
enabling ASPM during probe of Qualcomm PCIe controllers as reported by
lockdep:

  ============================================
  WARNING: possible recursive locking detected
  6.7.0 #40 Not tainted
  --------------------------------------------
  kworker/u16:5/90 is trying to acquire lock:
  ffffacfa78ced000 (pci_bus_sem){++++}-{3:3}, at: pcie_aspm_pm_state_change+0x58/0xdc

              but task is already holding lock:
  ffffacfa78ced000 (pci_bus_sem){++++}-{3:3}, at: pci_walk_bus+0x34/0xbc

              other info that might help us debug this:
   Possible unsafe locking scenario:

         CPU0
         ----
    lock(pci_bus_sem);
    lock(pci_bus_sem);

               *** DEADLOCK ***

  Call trace:
   print_deadlock_bug+0x25c/0x348
   __lock_acquire+0x10a4/0x2064
   lock_acquire+0x1e8/0x318
   down_read+0x60/0x184
   pcie_aspm_pm_state_change+0x58/0xdc
   pci_set_full_power_state+0xa8/0x114
   pci_set_power_state+0xc4/0x120
   qcom_pcie_enable_aspm+0x1c/0x3c [pcie_qcom]
   pci_walk_bus+0x64/0xbc
   qcom_pcie_host_post_init_2_7_0+0x28/0x34 [pcie_qcom]

The deadlock can easily be reproduced on machines like the Lenovo ThinkPad
X13s by adding a delay to increase the race window during asynchronous
probe where another thread can take a write lock.

Add a new pci_set_power_state_locked() and associated helper functions that
can be called with the PCI bus semaphore held to avoid taking the read lock
twice.
Data is provided by the National Vulnerability Database (NVD)
LinuxLinux Kernel Version >= 6.7.0 < 6.7.5
Zu dieser CVE wurde keine CISA KEV oder CERT.AT-Warnung gefunden.
EPSS Metriken
Type Source Score Percentile
EPSS FIRST.org 0.01% 0.017
CVSS Metriken
Source Base Score Exploit Score Impact Score Vector string
nvd@nist.gov 5.5 1.8 3.6
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
CWE-667 Improper Locking

The product does not properly acquire or release a lock on a resource, leading to unexpected resource state changes and behaviors.