5.5
CVE-2023-52676
- EPSS 0.01%
- Published 17.05.2024 15:15:18
- Last modified 25.09.2025 16:23:01
- Source 416baaa9-dc9f-4396-8d5f-8c081f
- Teams watchlist Login
- Open Login
In the Linux kernel, the following vulnerability has been resolved: bpf: Guard stack limits against 32bit overflow This patch promotes the arithmetic around checking stack bounds to be done in the 64-bit domain, instead of the current 32bit. The arithmetic implies adding together a 64-bit register with a int offset. The register was checked to be below 1<<29 when it was variable, but not when it was fixed. The offset either comes from an instruction (in which case it is 16 bit), from another register (in which case the caller checked it to be below 1<<29 [1]), or from the size of an argument to a kfunc (in which case it can be a u32 [2]). Between the register being inconsistently checked to be below 1<<29, and the offset being up to an u32, it appears that we were open to overflowing the `int`s which were currently used for arithmetic. [1] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L7494-L7498 [2] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L11904
Verknüpft mit AI von unstrukturierten Daten zu bestehenden CPE der NVD
This information is available to logged-in users. Login
Data is provided by the National Vulnerability Database (NVD)
Linux ≫ Linux Kernel Version >= 5.10.33 < 5.11
Linux ≫ Linux Kernel Version >= 5.11.17 < 6.6.14
Linux ≫ Linux Kernel Version >= 6.7 < 6.7.2
Zu dieser CVE wurde keine CISA KEV oder CERT.AT-Warnung gefunden.
Type | Source | Score | Percentile |
---|---|---|---|
EPSS | FIRST.org | 0.01% | 0.006 |
Source | Base Score | Exploit Score | Impact Score | Vector string |
---|---|---|---|---|
nvd@nist.gov | 5.5 | 1.8 | 3.6 |
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
|
CWE-190 Integer Overflow or Wraparound
The product performs a calculation that can produce an integer overflow or wraparound when the logic assumes that the resulting value will always be larger than the original value. This occurs when an integer value is incremented to a value that is too large to store in the associated representation. When this occurs, the value may become a very small or negative number.