7.8

CVE-2025-39944

In the Linux kernel, the following vulnerability has been resolved:

octeontx2-pf: Fix use-after-free bugs in otx2_sync_tstamp()

The original code relies on cancel_delayed_work() in otx2_ptp_destroy(),
which does not ensure that the delayed work item synctstamp_work has fully
completed if it was already running. This leads to use-after-free scenarios
where otx2_ptp is deallocated by otx2_ptp_destroy(), while synctstamp_work
remains active and attempts to dereference otx2_ptp in otx2_sync_tstamp().
Furthermore, the synctstamp_work is cyclic, the likelihood of triggering
the bug is nonnegligible.

A typical race condition is illustrated below:

CPU 0 (cleanup)           | CPU 1 (delayed work callback)
otx2_remove()             |
  otx2_ptp_destroy()      | otx2_sync_tstamp()
    cancel_delayed_work() |
    kfree(ptp)            |
                          |   ptp = container_of(...); //UAF
                          |   ptp-> //UAF

This is confirmed by a KASAN report:

BUG: KASAN: slab-use-after-free in __run_timer_base.part.0+0x7d7/0x8c0
Write of size 8 at addr ffff88800aa09a18 by task bash/136
...
Call Trace:
 <IRQ>
 dump_stack_lvl+0x55/0x70
 print_report+0xcf/0x610
 ? __run_timer_base.part.0+0x7d7/0x8c0
 kasan_report+0xb8/0xf0
 ? __run_timer_base.part.0+0x7d7/0x8c0
 __run_timer_base.part.0+0x7d7/0x8c0
 ? __pfx___run_timer_base.part.0+0x10/0x10
 ? __pfx_read_tsc+0x10/0x10
 ? ktime_get+0x60/0x140
 ? lapic_next_event+0x11/0x20
 ? clockevents_program_event+0x1d4/0x2a0
 run_timer_softirq+0xd1/0x190
 handle_softirqs+0x16a/0x550
 irq_exit_rcu+0xaf/0xe0
 sysvec_apic_timer_interrupt+0x70/0x80
 </IRQ>
...
Allocated by task 1:
 kasan_save_stack+0x24/0x50
 kasan_save_track+0x14/0x30
 __kasan_kmalloc+0x7f/0x90
 otx2_ptp_init+0xb1/0x860
 otx2_probe+0x4eb/0xc30
 local_pci_probe+0xdc/0x190
 pci_device_probe+0x2fe/0x470
 really_probe+0x1ca/0x5c0
 __driver_probe_device+0x248/0x310
 driver_probe_device+0x44/0x120
 __driver_attach+0xd2/0x310
 bus_for_each_dev+0xed/0x170
 bus_add_driver+0x208/0x500
 driver_register+0x132/0x460
 do_one_initcall+0x89/0x300
 kernel_init_freeable+0x40d/0x720
 kernel_init+0x1a/0x150
 ret_from_fork+0x10c/0x1a0
 ret_from_fork_asm+0x1a/0x30

Freed by task 136:
 kasan_save_stack+0x24/0x50
 kasan_save_track+0x14/0x30
 kasan_save_free_info+0x3a/0x60
 __kasan_slab_free+0x3f/0x50
 kfree+0x137/0x370
 otx2_ptp_destroy+0x38/0x80
 otx2_remove+0x10d/0x4c0
 pci_device_remove+0xa6/0x1d0
 device_release_driver_internal+0xf8/0x210
 pci_stop_bus_device+0x105/0x150
 pci_stop_and_remove_bus_device_locked+0x15/0x30
 remove_store+0xcc/0xe0
 kernfs_fop_write_iter+0x2c3/0x440
 vfs_write+0x871/0xd70
 ksys_write+0xee/0x1c0
 do_syscall_64+0xac/0x280
 entry_SYSCALL_64_after_hwframe+0x77/0x7f
...

Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure
that the delayed work item is properly canceled before the otx2_ptp is
deallocated.

This bug was initially identified through static analysis. To reproduce
and test it, I simulated the OcteonTX2 PCI device in QEMU and introduced
artificial delays within the otx2_sync_tstamp() function to increase the
likelihood of triggering the bug.
Verknüpft mit AI von unstrukturierten Daten zu bestehenden CPE der NVD
Diese Information steht angemeldeten Benutzern zur Verfügung. Login Login
Daten sind bereitgestellt durch National Vulnerability Database (NVD)
LinuxLinux Kernel Version >= 6.1 < 6.1.154
LinuxLinux Kernel Version >= 6.2 < 6.6.108
LinuxLinux Kernel Version >= 6.7 < 6.12.49
LinuxLinux Kernel Version >= 6.13 < 6.16.9
LinuxLinux Kernel Version6.17 Updaterc1
LinuxLinux Kernel Version6.17 Updaterc2
LinuxLinux Kernel Version6.17 Updaterc3
LinuxLinux Kernel Version6.17 Updaterc4
LinuxLinux Kernel Version6.17 Updaterc5
LinuxLinux Kernel Version6.17 Updaterc6
Zu dieser CVE wurde keine CISA KEV oder CERT.AT-Warnung gefunden.
EPSS Metriken
Typ Quelle Score Percentile
EPSS FIRST.org 0.02% 0.053
CVSS Metriken
Quelle Base Score Exploit Score Impact Score Vector String
nvd@nist.gov 7.8 1.8 5.9
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
CWE-416 Use After Free

The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.