7.8
CVE-2025-38722
- EPSS 0.02%
- Veröffentlicht 04.09.2025 15:33:15
- Zuletzt bearbeitet 25.11.2025 21:47:55
- Quelle 416baaa9-dc9f-4396-8d5f-8c081f
- CVE-Watchlists
- Unerledigt
In the Linux kernel, the following vulnerability has been resolved: habanalabs: fix UAF in export_dmabuf() As soon as we'd inserted a file reference into descriptor table, another thread could close it. That's fine for the case when all we are doing is returning that descriptor to userland (it's a race, but it's a userland race and there's nothing the kernel can do about it). However, if we follow fd_install() with any kind of access to objects that would be destroyed on close (be it the struct file itself or anything destroyed by its ->release()), we have a UAF. dma_buf_fd() is a combination of reserving a descriptor and fd_install(). habanalabs export_dmabuf() calls it and then proceeds to access the objects destroyed on close. In particular, it grabs an extra reference to another struct file that will be dropped as part of ->release() for ours; that "will be" is actually "might have already been". Fix that by reserving descriptor before anything else and do fd_install() only when everything had been set up. As a side benefit, we no longer have the failure exit with file already created, but reference to underlying file (as well as ->dmabuf_export_cnt, etc.) not grabbed yet; unlike dma_buf_fd(), fd_install() can't fail.
Verknüpft mit AI von unstrukturierten Daten zu bestehenden CPE der NVD
Daten sind bereitgestellt durch National Vulnerability Database (NVD)
Linux ≫ Linux Kernel Version >= 5.16 < 6.12.43
Linux ≫ Linux Kernel Version >= 6.13 < 6.15.11
Linux ≫ Linux Kernel Version >= 6.16 < 6.16.2
Linux ≫ Linux Kernel Version6.17 Updaterc1
| Typ | Quelle | Score | Percentile |
|---|---|---|---|
| EPSS | FIRST.org | 0.02% | 0.035 |
| Quelle | Base Score | Exploit Score | Impact Score | Vector String |
|---|---|---|---|---|
| nvd@nist.gov | 7.8 | 1.8 | 5.9 |
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H
|
CWE-416 Use After Free
The product reuses or references memory after it has been freed. At some point afterward, the memory may be allocated again and saved in another pointer, while the original pointer references a location somewhere within the new allocation. Any operations using the original pointer are no longer valid because the memory "belongs" to the code that operates on the new pointer.