5.5

CVE-2022-49913

In the Linux kernel, the following vulnerability has been resolved:

btrfs: fix inode list leak during backref walking at find_parent_nodes()

During backref walking, at find_parent_nodes(), if we are dealing with a
data extent and we get an error while resolving the indirect backrefs, at
resolve_indirect_refs(), or in the while loop that iterates over the refs
in the direct refs rbtree, we end up leaking the inode lists attached to
the direct refs we have in the direct refs rbtree that were not yet added
to the refs ulist passed as argument to find_parent_nodes(). Since they
were not yet added to the refs ulist and prelim_release() does not free
the lists, on error the caller can only free the lists attached to the
refs that were added to the refs ulist, all the remaining refs get their
inode lists never freed, therefore leaking their memory.

Fix this by having prelim_release() always free any attached inode list
to each ref found in the rbtree, and have find_parent_nodes() set the
ref's inode list to NULL once it transfers ownership of the inode list
to a ref added to the refs ulist passed to find_parent_nodes().
Verknüpft mit AI von unstrukturierten Daten zu bestehenden CPE der NVD
Diese Information steht angemeldeten Benutzern zur Verfügung. Login Login
Daten sind bereitgestellt durch National Vulnerability Database (NVD)
LinuxLinux Kernel Version >= 4.14 < 5.4.224
LinuxLinux Kernel Version >= 5.5 < 5.10.154
LinuxLinux Kernel Version >= 5.11 < 5.15.78
LinuxLinux Kernel Version >= 5.16 < 6.0.8
LinuxLinux Kernel Version6.1 Updaterc1
LinuxLinux Kernel Version6.1 Updaterc2
LinuxLinux Kernel Version6.1 Updaterc3
Zu dieser CVE wurde keine CISA KEV oder CERT.AT-Warnung gefunden.
EPSS Metriken
Typ Quelle Score Percentile
EPSS FIRST.org 0.02% 0.032
CVSS Metriken
Quelle Base Score Exploit Score Impact Score Vector String
nvd@nist.gov 5.5 1.8 3.6
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H
CWE-401 Missing Release of Memory after Effective Lifetime

The product does not sufficiently track and release allocated memory after it has been used, which slowly consumes remaining memory.