9.8
CVE-2025-7394
- EPSS 0.08%
- Veröffentlicht 18.07.2025 22:34:23
- Zuletzt bearbeitet 03.12.2025 15:21:28
- Quelle facts@wolfssl.com
- CVE-Watchlists
- Unerledigt
In the OpenSSL compatibility layer implementation, the function RAND_poll() was not behaving as expected and leading to the potential for predictable values returned from RAND_bytes() after fork() is called. This can lead to weak or predictable random numbers generated in applications that are both using RAND_bytes() and doing fork() operations. This only affects applications explicitly calling RAND_bytes() after fork() and does not affect any internal TLS operations. Although RAND_bytes() documentation in OpenSSL calls out not being safe for use with fork() without first calling RAND_poll(), an additional code change was also made in wolfSSL to make RAND_bytes() behave similar to OpenSSL after a fork() call without calling RAND_poll(). Now the Hash-DRBG used gets reseeded after detecting running in a new process. If making use of RAND_bytes() and calling fork() we recommend updating to the latest version of wolfSSL. Thanks to Per Allansson from Appgate for the report.
Verknüpft mit AI von unstrukturierten Daten zu bestehenden CPE der NVD
Daten sind bereitgestellt durch National Vulnerability Database (NVD)
| Typ | Quelle | Score | Percentile |
|---|---|---|---|
| EPSS | FIRST.org | 0.08% | 0.242 |
| Quelle | Base Score | Exploit Score | Impact Score | Vector String |
|---|---|---|---|---|
| nvd@nist.gov | 9.8 | 3.9 | 5.9 |
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
|
| facts@wolfssl.com | 7 | 0 | 0 |
CVSS:4.0/AV:N/AC:H/AT:P/PR:N/UI:P/VC:H/VI:N/VA:N/SC:H/SI:N/SA:N/E:X/CR:X/IR:X/AR:X/MAV:X/MAC:X/MAT:X/MPR:X/MUI:X/MVC:X/MVI:X/MVA:X/MSC:X/MSI:X/MSA:X/S:X/AU:X/R:X/V:X/RE:X/U:X
|
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
CWE-338 Use of Cryptographically Weak Pseudo-Random Number Generator (PRNG)
The product uses a Pseudo-Random Number Generator (PRNG) in a security context, but the PRNG's algorithm is not cryptographically strong.