7.5

CVE-2022-35974

TensorFlow is an open source platform for machine learning. If `QuantizeDownAndShrinkRange` is given nonscalar inputs for `input_min` or `input_max`, it results in a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit 73ad1815ebcfeb7c051f9c2f7ab5024380ca8613. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.

Data is provided by the National Vulnerability Database (NVD)
GoogleTensorflow Version >= 2.7.0 < 2.7.2
GoogleTensorflow Version >= 2.8.0 < 2.8.1
GoogleTensorflow Version >= 2.9.0 < 2.9.1
GoogleTensorflow Version2.10 Updaterc0
GoogleTensorflow Version2.10 Updaterc1
GoogleTensorflow Version2.10 Updaterc2
GoogleTensorflow Version2.10 Updaterc3
Zu dieser CVE wurde keine CISA KEV oder CERT.AT-Warnung gefunden.
EPSS Metriken
Type Source Score Percentile
EPSS FIRST.org 0.13% 0.33
CVSS Metriken
Source Base Score Exploit Score Impact Score Vector string
nvd@nist.gov 7.5 3.9 3.6
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
security-advisories@github.com 5.9 2.2 3.6
CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H
CWE-20 Improper Input Validation

The product receives input or data, but it does not validate or incorrectly validates that the input has the properties that are required to process the data safely and correctly.